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SUMMARY

Our contribution to the benchmark is multifold. In addition to providing accurate unsteady simulations
at the required Ra value of 3:4×105, we determine accurately the three �rst critical bifurcation points,
investigate the supercritical regime, and study the di�erences between time-averaged solutions and the
corresponding base solution at Ra=4×105. We thereby establish the existence of, at least, 4 di�erent
branches of solutions and of 3 multiple unsteady periodic solutions for a Rayleigh value of 4×105. First
appearance of quasi-periodic �ow is found at Ra about 5:0×105 and �rst appearance of chaotic solutions
is found for 5:5×105 approximately. We investigate the di�erences between time-averaged solutions
and the corresponding base �ow solution at Ra=4×105. It is found that they exhibit symmetric feature
and similar spatial distribution and that their amplitudes are proportional to the squared amplitude of
periodic solutions.
All these computations are carried out using 2D Chebyshev spatial approximations with spatial resolution
up to 48×180. For the unsteady computations, a second order time stepping scheme is used, the
incompressibility condition being strictly enforced through the use of an in�uence matrix technique,
while for the accurate determination of the critical points, an original algorithm based on a combination
of Newton, continuation and Arnoldi Krylov type methods was developed.
Furthermore we investigate the stability of the 2D benchmark solution with respect to 3D periodic
disturbances by using a spectral (Chebyshev and Fourier) time-stepping (projection) code. In the 8:1
cavity we did not �nd any 3D instability before the onset of time dependence of 2D �ows nor at the
mandatory Ra of 3:4×105. 3D instabilities were observed for Ra about 4×105 corresponding to a
typical wavelength of two times the cavity width. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The motivations of the benchmark and the physical problem have been detailed in Reference
[1]. In addition to providing the converged time-averaged solution requested for the bench-
mark, the present contribution aims at answering some of the additional questions raised in
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Reference [1]. The main characteristics of the present contribution is that we use spectral
Chebyshev collocation for the spatial approximation. This type of approximation is known
to provide the best order of convergence in the sense that, unlike methods of a priori given
�nite order, the use of Chebyshev basis expansion provides an approximation whose order
of convergence only depends on the regularity of the solution (see References [2; 3]). We
use this type of approximation both in the context of time stepping algorithms but also for
the direct computation of the steady solutions and of the accurate computation of the critical
parameters corresponding to the �rst three Hopf bifurcation points.
As the benchmark mainly concerns unsteady natural convection �ows, numerical integration

of the unsteady Navier–Stokes equations (time stepping algorithm) is therefore the cornerstone.
Time stepping algorithms, making use of time-schemes to integrate the unsteady Navier–Stokes
equations, have long been used to study not only unsteady �ows and non-linear dynamics but
also the onset of time dependence. When used to study the onset of time dependence, they
have some limitations for the following reasons: this methodology is not ideally suited for
the accurate determination of the critical value corresponding to the Hopf bifurcation (the
accuracy exceeds hardly 3 �gures and it will not work at all in the case of a subcritical Hopf
bifurcation); further one may miss the most unstable mode if it breaks the symmetry of the
base �ow solution due to the fact that, although perturbations with the same symmetry as the
base �ow are naturally triggered by time stepping algorithms, those breaking the symmetry
of the base �ow have to grow from round-o� level which may take very long close to the
threshold. Accurate determination of the critical points thus requires algorithms for this speci�c
purpose which have to be used in conjunction with time stepping algorithms.
Linear stability analyses of base �ow solutions which do not have an explicit analytical

expression consist of two steps: �rst one should be able to compute the steady base �ow
solutions, either stable or unstable, a necessary step before investigating the spectrum of
their corresponding Jacobian (linearized system). Newton’s iteration is the most e�cient way
to compute the base �ow solutions of the steady Navier–Stokes equations while the leading
eigenpairs (eigenvalue and eigenfunction) of the Jacobian can be obtained by Arnoldi’s method
associated with accurate or approximate exponentiation, inverse transformation or continuation
method. Newton’s iteration however needs most of the time an e�cient preconditioning and
recent developments have proposed to use a Stokes preconditioning derived from available
time stepping algorithms.
In the present contribution, preconditioned Newton’s iteration, Arnoldi’s method and pre-

conditioned continuation method are combined to determine accurately the transition point
corresponding to the onset of time dependence in the benchmark. A time stepping algorithm
is also used to obtain accurate unsteady �ow �elds: the time scheme used is of second-order
and the in�uence matrix technique is used to ensure that the velocity �eld is divergence free.
Our contribution could stop here had we decided to consider only the two-dimensional

aspects of the benchmark. As three-dimensional studies are becoming increasingly more fea-
sible, it seemed interesting to investigate the transition from two-dimensional �ow to three-
dimensional �ow (2D–3D transition). In a companion study [4] we developed a methodology
to investigate linear stability analyses of a two-dimensional steady-state base solution with
respect to two- and three-dimensional perturbations, which we applied to the present aspect
ratio 8 cavity. We assume that the benchmark cavity has in�nite depth and that �ows are peri-
odic in the direction of cavity depth so that we can use Fourier series. The three-dimensional
unsteady Navier–Stokes equations are solved using spectral methods (Chebyshev and Fourier)
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for spatial discretization, a second-order time scheme and a projection method to handle the
velocity–pressure coupling. Numerical simulations will be done for a cavity of given depth:
if �ows are two-dimensional, i.e. invariant by translation in the depth direction, the coe�-
cients of all Fourier modes except the constant mode will turn out to be zero; otherwise �ows
are three-dimensional and periodic in the depth direction. Since our primary aim is to deter-
mine qualitatively the transition points from two- to three-dimensional �ows, a time stepping
algorithm amply suits for this purpose.
Our contribution is organized as follows. We summarize in the next section the details of the

numerical algorithms that were used, we emphasize in particular two-dimensional algorithms
for steady-state solving and linear stability analyses and three-dimensional time stepping al-
gorithm. We then present the determination of the critical points, the benchmark results, the
optional two-dimensional results of the benchmark and three-dimensional results before giving
�nal conclusions.

2. NUMERICAL METHODS

The two-dimensional results reported here have been obtained entirely by using spectral
Chebyshev collocation methods [2; 3]. The velocity components and temperature are sought
in polynomial spaces PN x(x) ⊗ PN z(z). In a Chebyshev collocation method the variables are
de�ned at grid points which are the corresponding Gauss–Lobatto points, i.e.

xi=
(
1 + cos

(
�i
Nx

))
W
2

and zj=
(
1 + cos

(
�j
Nz

))
H
2

with 06i6Nx and 06j6Nz. Two di�erent codes have been used: one integrates the two-
dimensional unsteady Navier–Stokes equations while the other two were developed more
recently to compute directly the steady state solutions and perform linear stability analyses.
The three-dimensional results have been obtained by using spectral Chebyshev collocation
combined with Fourier Galerkin method. A time stepping projection method has been devel-
oped to integrate the three-dimensional unsteady Navier–Stokes equations. In the three codes
the Helmholtz equations arising from time discretization are solved by direct diagonalization
using eigenvalues and eigenvectors of the second derivative operator [5]. The Lapack library
is used to �nd eigenvalues and eigenvectors, inverse matrices and to perform matrix–matrix
and matrix–vector multiplications.

2.1. Two-dimensional time stepping algorithm

The unsteady Navier–Stokes equations are discretized by a second-order time stepping of
�nite di�erence type [5]. Non-linear terms in conservative form are treated explicitly, viscous
terms are treated implicitly. We use the scheme originally proposed in Reference [6] which
combines a BDF2 (see Reference [7]) for the linear part with a second-order Adams Bashforth
extrapolation of the convective terms. When applied to a scalar advection–di�usion equation
such as

@f
@t
+V · ∇f=∇2f

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:981–998
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this scheme reads

3fn+1 − 4fn + fn−1
2�t

+ 2V · ∇fn −V · ∇fn−1 =∇2fn+1

where �t is the time step. This equation can be cast in an Helmholtz equation for the unknown
�eld f at time n+ 1:

∇2fn+1 − �fn+1 = Sf
where �=3=2�t. The source term Sf of this equation comprises all the known quantities at
previous time levels n�t and (n − 1)�t. As said above, the resulting Helmholtz equation
for a scalar �eld is solved by a direct method based on partial or full diagonalization of the
second-order partial derivatives. As for the velocity–pressure coupling, the unsteady Stokes
problem is solved exactly at each time step, i.e. both the momentum and continuity equations
are enforced simultaneously. This is achieved by an in�uence matrix or capacitance method
[5; 8]. The velocity and pressure �elds are sought in polynomial spaces of same order and
exactly divergence free solutions are obtained by using the Sherman–Morrison–Woodbury
formula [9; 10].

2.2. Two-dimensional steady state and stability analysis algorithm

2.2.1. Governing equations. For the benchmark solution the steady Navier–Stokes equations
read in dimensionless form (see Reference [1] for the reference quantities):

0 = ∇ · Ũ

@Ũ
@t
= 0=−∇P + Pr√

RaPr
∇2Ũ + j̃�− Ũ · ∇Ũ

@�
@t
= 0=

1√
RaPr

∇2�− Ũ · ∇�

(1)

The stability of (Ũ ;�; P) is governed by the linearized unsteady Navier–Stokes equations
for the perturbations (̃u; �; p):

0 = ∇ · ũ
@̃u
@t
= −∇p+ Pr√

RaPr
∇2ũ+ j̃�− Ũ · ∇ũ− ũ · ∇Ũ

@�
@t
=

1√
RaPr

∇2�− Ũ · ∇�− ũ · ∇�

(2)

If we suppose that Ũ and ũ are divergence free, Equations (1) and (2) can be cast into the
following form:

@X
@t
=

(
C√
RaPr

L+ N
)
X=0 (3)
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and

@x
@t
=

(
C√
RaPr

L+ NX

)
x= JXx (4)

where X=(Ũ ;�);x= (̃u; �); L representing the two-dimensional Laplace operator—∇2; NX
the remaining terms in equations (1) and NX the Frechet derivative of N on X; JX the Jacobian,
C=1 for temperature and C=Pr for velocity.

2.2.2. Steady state solving. The steady-state solver is based on the fact that the steady-state
equations and the incremental operator consisting of the di�erence of the solution between
two consecutive time steps have the same solutions [12]. This allows one to use a �rst-order
time stepping scheme (based on explicit treatment for non-linear terms in convective form
and implicit for viscous terms) to precondition the steady-state equations (3):

Xn+1 −Xn
�t

=
C√
RaPr

LXn+1 + NXn (5)

which is equivalent to

Xn+1 −Xn
�t

=
(
I −�t C√

RaPr
L
)−1( C√

RaPr
L+ N

)
Xn (6)

When the same scheme is applied to Equations (4), we obtain similarly:

xn+1 =
(
I −�t C√

RaPr
L
)−1

(�tNX + I)xn (7)

and

xn+1 − xn
�t

=
(
I −�t C√

RaPr
L
)−1( C√

RaPr
L+ NX

)
xn (8)

The solution of the non-linear system (3) is obtained through a preconditioned Newton’s
iteration:

(
I − C�t√

RaPr
L
)−1( C√

RaPr
L+ NX

)
�X=−

(
I − C�t√

RaPr
L
)−1( C√

RaPr
L+ N

)
X (9)

X←X+ �X
and each iteration is solved through matrix free linear solvers such as GMRES [11]. This
preconditioning of Newton’s iteration is very e�cient for large time step.
Note that we have kept so far the factor C=

√
RaPr in the preconditioner used so as to

be consistant with the governing equations. In practice all equations were multiplied by√
RaPr=C before preconditioning and the preconditioner is then (I −�tL)−1. We thus work

with ((
√
RaPr=C)N + L)X=0; (

√
RaPr=C)JX, etc.

In the steady-state solving algorithm and that for linear stability analysis to be described
next the velocity–pressure coupling is enforced through a direct Uzawa method [3] where
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pressure and divergence are only de�ned and enforced on the inner Gauss–Lobatto points so
as not to have spurious pressure modes.

2.2.3. Linear stability analysis by Arnoldi’s method. From Equations (8) we have

xn+1 =xn +�t
(
I −�t C√

RaPr
L
)−1(

NX +
C√
RaPr

L
)
xn (10)

which is an approximate exponential transformation of the Jacobian:

xn+1 ≈ xn +�t
(
NX +

C√
RaPr

L
)
xn=xn +�tJXxn ≈ exp(�tJX)xn

for �t small enough. Since this approximation transforms the eigenvalues of JX with largest
real part into those of largest modulus of exp(�tJX), we therefore use Arnoldi’s method to
calculate the leading eigenvalues of JX (see Reference [12] for details) and to perform the
linear stability analysis. The main drawback of this method is that it requires very small �t
and consequently a large number of time steps. It is nevertheless a good method to provide
an estimation of the leading eigenvalues and eigenfunctions. In the next subsection we present
a method which makes use of this estimation and improves on its accuracy.

2.2.4. Linear stability analysis via continuation. From a linear algebra point of view, the
leading eigenvalue �=�+i! and the corresponding discrete eigenfunction x=xr+ix i satisfy
the following equations:

JXxr=�xr −!x i

JXx i=�xi +!xr
(11)

This algebraic system can be solved by Newton’s iteration via continuation technique using
as initial estimates of � and x those obtained with Arnoldi’s method. In fact we allow � and
! to change within Newton’s iteration while one component of xr and x i is normalized. The
full process is illustrated below:∣∣∣∣∣∣∣∣∣∣∣∣

JX − � ! −xr x i

−! JX − � −x i −xr

eTl 0 0 0

0 eTl 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

�xr

�x i

��

�!

∣∣∣∣∣∣∣∣∣∣∣∣
=−

∣∣∣∣∣∣∣∣∣∣∣∣

JXxr − �xr +!x i

JXx i − �x i −!xr

0

0

∣∣∣∣∣∣∣∣∣∣∣∣
xr←xr + �xr

x i←x i + �x i

�←�+ ��
!←!+ �!

(12)

where eTl is the transpose of the lth unit vector el and l should correspond to an ordinary point,
i.e. one interior point. Equations (12) are �rst multiplied by

√
RaPr=C, then preconditioned
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by discrete Stokes operator (I − �tL)−1 and �nally solved again by GMRES in the same
manner as Equation (9).
This method was initially proposed by Chenier [13] to better follow the eigenpair � and

x. It is more powerful than just following the eigenpair and improving the accuracy. For the
linear stability analysis we are not only interested in the value of � corresponding to a given
value of Rayleigh number but, more importantly, in the value of Rayleigh number at which �
becomes of zero real part, i.e. the critical Rayleigh number. This is another search of root of
�(Ra)=0 which can be performed with secant method coupled with Equations (9) and (12).
The entire search process was made fully automatic and can be summarized as follows:

1. Fix Ra1 and solve Equation (9) to obtain the corresponding X1
2. Use Arnoldi’s method to �nd the leading eigenpairs � and x
3. Choose one eigenpair and solve Equations (12) so as to determine accurately �1 =�1+i!1
4. Prescribe a �Ra, set Ra2 =Ra1−sign(�1)�Ra and solve Equation (9) and then Equations
(12) to obtain X2 and �2 =�2 + i!2

5. Set Ra3 =Ra1 − (Ra2 −Ra1)×�1=(�2 − �1), solve again Equation (9) and Equation (12)
to �nd X3 and �3 =�3 + i!3

6. If |�3|¡� go to Step 7, otherwise compare the sign and the magnitude of �3 with those
of �1 and �2, assign the results of previous step to either set 1 (Step 3) or set 2 (Step
4) and repeat Step 5 until the convergence criterion is satis�ed.

7. Go back to Step 3 with another eigenpair if there is any, otherwise stop.

The algorithm for steady-state solving and linear stability analysis has been applied suc-
cessfully to a circular di�erentially heated cavity [14] and a di�erentially heated square cavity
with conducting horizontal walls [4]. More details can be found in References [12; 13; 15–18].

2.3. Three-dimensional time stepping algorithm

The three-dimensional unsteady Navier–Stokes equations of the benchmark problem are dis-
cretized in time by using the same second-order scheme as for the two-dimensional case. Note
that non-linear terms are in convective form rather than conservative form. The discretized
equations read then

0=∇ · ũn+1

3̃un+1 − 4̃un + ũn−1
2�t

+ 2(̃u · ∇ũ)n − (̃u · ∇ũ)n−1=−∇pn+1 + Pr√
RaPr

∇2ũn+1 + j̃�n+1

3�n+1 − 4�n + �n−1
2�t

+ 2(̃u · ∇�)n − (̃u · ∇�)n−1= 1√
RaPr

∇2�n+1

(13)

Although the in�uence matrix technique or direct Uzawa method could be used to enforce
the velocity–pressure coupling in the case of two Chebyshev and one Fourier directions, we
choose to use a projection method consisting of two steps. In the �rst step (prediction) we
solve the momentum and energy equations by dropping the divergence-free condition and
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using the pressure pn at time step n:

3�n+1 − 4�n + �n−1
2�t

+ 2(̃u · ∇�)n − (̃u · ∇�)n−1= 1√
RaPr

∇2�n+1

3̃u∗ − 4̃un + ũn−1
2�t

+ 2(̃u · ∇ũ)n − (̃u · ∇ũ)n−1=−∇pn + Pr√
RaPr

∇2ũ∗ + j̃�n+1
(14)

The corresponding boundary conditions are those of �n+1 and ũn+1.
As ũ∗ is not divergence free, the second step consists of its projection on the divergence

free subspace by solving the following system:

3(̃un+1 − ũ∗)
2�t

=−∇(pn+1 − pn)

coupled with ∇ · ũn+1 =0. This can be done by solving
3∇ · ũ∗
2�t

=∇ · �I∇(pn+1 − pn) (15)

where �I is a modi�ed identity matrix whose �rst and last diagonal elements are zero to
account for the fact that ũn+1 = ũ∗ on the boundaries. After solving Equation (15), ũn+1 is
explicitly recovered by

ũn+1 = ũ∗ − 2�t
3
∇(pn+1 − pn)

and the pressure is incremented. More details on numerical analysis of projection method can
be found in Reference [19].

3. NUMERICAL RESULTS

The results presented in this section are mainly two-dimensional. Three-dimensional results
are presented in Section 3.4. It is to be noted that the results presented are all dimensionless
and based on the reference quantities [1].
The symmetry properties of the two-dimensional solutions, recalled in Reference [1], are

the following:

(�; Ũ ; P)(x; y)=−(�; Ũ ;−P)(W − x; H − y)
A solution possessing this symmetry exhibits skew-symmetry in the velocity and temperature
�elds, and will be de�ned as the ‘skew-symmetric’ (SS). It is known that the eigenmodes
will have either the same symmetry or the opposite one, i.e.

(�̃; ũ; ṽ; p̃)(x; y)=−(�̃; ũ; ṽ;−p̃)(W − x; H − y)
or

(�̃; ũ; ṽ; p̃)(x; y)= (�̃; ũ; ṽ;−p̃)(W − x; H − y)
The eigenmodes breaking the base �ow symmetry will be called symmetry-breaking (SB) [1].
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Table I. Critical points of the �rst three modes. Rac—critical
Rayleigh number, !c—critical angular frequency, Tc—critical

period, SS—skew-symmetric and SB—symmetry-breaking.

Spatial resolution
Nx×Nz 32×120 40×140
Mode 1
Rac 306180.6 306191.6
!c 1.7090808 1.7090841
Tc 3.6763536 3.6763464

Symmetry SB SB

Mode 2
Rac 311164.6 311169.8
!c 1.8349142 1.8349204
Tc 3.4242394 3.4242277

Symmetry SS SS

Mode 3
Rac 333899.6
!c 1.9661282
Tc 3.1957149

Symmetry SB

3.1. Critical points

The accurate determination of the �rst critical points has been carried out by using the method-
ology described above. A steady solution at a given Rayleigh number is obtained using the
steady-state solver. Its linear stability is then investigated by Arnoldi’s method. The largest
real part of the leading eigenvalues indicates whether the Rayleigh number investigated is
supercritical and provides an estimate of its distance from the critical point. By adjusting the
Rayleigh number according to the sign and the value of the largest real part of the leading
eigenvalues, we are able to approach the critical points, i.e. determine a Rayleigh number
at which the largest real part of the leading eigenvalues is in the neighbourhood of 0. The
steady-state base solution and the eigenpairs provided by Arnoldi’s method are then used as
initial guesses for the search of the bifurcation point by secant method: Equations (12) and
(9) are solved to implement the secant method solving �(Ra)=0.
The critical points of the �rst three unstable modes were thus computed. Two spatial

resolutions are used for the �rst two modes to give an indication of the spatial conver-
gence of the results. Critical Rayleigh numbers, critical angular frequencies and the sym-
metries of the corresponding unstable modes are summarized in Table I. The correspond-
ing spatial structures of the temperature component of the eigenmodes are displayed in
Plate 1.
These results were obtained with the following convergence or stopping criteria. For steady-

state the iterative procedure was stopped when the ‖·‖∞ of the correction became smaller than
10−7. In the re�nement of the leading eigenpairs, Newton’s iteration was stopped when the
correction’s ‖·‖∞¡10−9 and the critical points are considered to be found when |R(�)|¡10−6
and the corresponding correction on Rayleigh number is then less than 0.2.
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The most unstable mode (Mode 1) was found to be symmetry-breaking and thus has the
opposite symmetry of the base �ow solution while the second most unstable mode (Mode 2)
keeps this symmetry and Mode 3 breaks again the symmetry of the base �ow solution. If
one considers two successive patches of the eigenmode, one positive and one negative, as
one wave structure, it can be seen that Mode 1 consists of 10 wave structures, Mode 2 of
11 structures and Mode 3 of 12 structures.‡ These structures travel clockwise around the
cavity, in the direction of the primary circulation, and the fact that the eigenmodes have
their maximum amplitudes along the side walls indicates that it is a boundary layer type
instability. Computations were �rst realized using a spatial resolution of Nx×Ny=32×120
which is thought to be high enough to get accurate results according to classical scaling laws
and from previous experience. A higher resolution of 40×140 was however used to con�rm
these values (Mode 1 and Mode 2). The comparison shows that the maximum di�erence
occurs for the critical Rayleigh numbers: an absolute di�erence of 11 in Rac for Mode 1,
which corresponds to a relative di�erence of 0.0033%, is observed. Spatial convergence can
thus be considered as obtained.

3.2. Time-dependent solution at Ra=3:4×105
Although multiple solutions have been found at supercritical Rayleigh numbers (see next
section), it seems that there is only one periodic solution at Ra=3:4×105. Two spatial reso-
lutions of Nx×Ny=32×120 and 48×180 have been used to perform numerical simulations.
We �rst used a spatial resolution of Nx×Ny=32×120 to investigate the problem. Once the
�nite amplitude time-periodic solution was obtained, the solution was interpolated to a �ner
spatial resolution of 48×180 and time integration was resumed. A comparison showed that
the solution for spatial resolution 48×180 can be considered as fully converged. A detailed
examination of the �ow structures shows that unsteady �ow at this mandatory Rayleigh num-
ber issues from the second most unstable mode (Mode 2) and keeps the base �ow symmetry.
Both the pointwise and global quantities required for the benchmark are presented in Table II
for spatial resolution 48×180 and several time step values to show the convergence. It is
noted that the period of unsteady nonlinear solution is equal to 3.4115 and that it is very
close to the critical period of Mode 2 at the bifurcation point (Tc = 3:4242).

3.3. Additional two-dimensional results

In this section we present extended two-dimensional results obtained for the benchmark prob-
lem: �ow regime, unstable base solution and time-averaged solutions at supercritical Ra.

3.3.1. Flow regime at supercritical Ra. We investigated a range of Rayleigh values from Rac
to 6×105 to identify the various branches of solutions and to get an indication of the �rst
appearance of chaos. What happens in this range is very similar to what was already observed
in cavities of other aspect ratio [20].
Figure 1 summarizes dozens of hours of computing time. Starting from a slightly supercrit-

ical Rayleigh number, and increasing Ra by small increments, asymptotic periodic solutions

‡It is easy to see that modes that have the base �ow symmetry have an odd number of wave structures while
modes with an even number of wave structures break the symmetry.
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Table II. Local and global results at Ra=3:4×105. Nuc represents the centerline Nusselt
number, i.e. dimensionless heat �ux across the cavity centreline.

Grid resolution: 48× 180 Grid resolution: 48×180
Time duration: 3900 Time duration: 1000

Steps per period: 404.87 Steps per period: 809.74

Quantity Average Amplitude Period Average Amplitude Period

u1 5:6356× 10−2 5:4829× 10−2 3.4115 5:6348× 10−2 5:4782× 10−2 3.4115
v1 0.46188 7:7206× 10−2 3.4115 0.46188 7:7143× 10−2 3.4115
�1 0.26548 4:2735× 10−2 3.4115 0.26548 4:2700× 10−2 3.4115

Skewness 0 0 0 0
�P14 −1:8548× 10−3 2:0380× 10−2 3.4115 −1:8536× 10−3 2:0361× 10−2 3.4115
�P51 −0:53486 2:2466× 10−2 3.4115 −0:53486 2:2447× 10−2 3.4115
�P35 0.53671 1:0067× 10−2 3.4115 0.53671 1:0059× 10−2 3.4115
Nu0 −4:57946 7:0995× 10−3 3.4115 −4:57946 7:0936× 10−3 3.4115
Nuc −4:57946 0.17777 3.4115 −4:57946 0.17765 3.4115
NuW −4:57946 7:0995× 10−3 3.4115 −4:57946 7:0936× 10−3 3.4115

Grid resolution: 48× 180 Grid resolution: 48×180
Time duration: 700 Time duration: 400

Steps per period: 2024.37 Steps per period: 4048.75

Quantity Average Amplitude Period Average Amplitude Period

u1 5:6345× 10−2 5:4768× 10−2 3.4115 5:6345× 10−2 5:4767× 10−2 3.4115
v1 0.46188 7:7125× 10−2 3.4115 0.46188 7:7123× 10−2 3.4115
�1 0.26548 4:2690× 10−2 3.4115 0.26548 4:2689× 10−2 3.4115

Skewness 0 0 0 0
�P14 −1:8536× 10−3 2:0355× 10−2 3.4115 −1:8536× 10−3 2:0355× 10−2 3.4115
�P51 −0:53486 2:2442× 10−2 3.4115 −0:53486 2:2441× 10−2 3.4115
�P35 0.53671 1:0057× 10−2 3.4115 0.53671 1:0056× 10−2 3.4115
Nu0 −4:57946 7:0921× 10−2 3.4115 −4:57946 7:0918× 10−3 3.4115
Nuc −4:57946 0.17761 3.4115 −4:57946 0.17761 3.4115
NuW −4:57946 7:0921× 10−3 3.4115 −4:57946 7:0918× 10−3 3.4115

were obtained after the transients following the sudden change in Ra decayed. These solutions
consist of 10 wave structures and oscillate with the critical period (T=3:6764). The sym-
metry of the base �ow solution is broken. Solutions possessing the same characteristics have
been obtained up to Ra=3:2×105 and this is the �rst branch of unsteady solutions. Using
a periodic solution at Ra=3:2×105 as initial condition, Ra was then increased to 3:3×105.
After a long transient (Figure 2) a periodic solution of �nite amplitude is �nally obtained,
with an oscillating period of 3.42. A close examination of the �uctuations shows that they
are symmetric: the base solution symmetry is restored and the periodic solution is induced
by the second most unstable mode (Mode 2 : 11 wave structures). From this periodic solution
Ra was further increased or decreased and periodic solutions of the same structure have been

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:981–998



992 S. XIN AND P. LE QUERE

9

10

11

12

13

14

3.0×105 3.5×105 4.0×105 4.5×105 5.0×105

N
um

be
r 

of
 S

tr
uc

tu
re

s

Rayleigh number

Branch 1

Branch 2

Branch 3

Branch 4

Figure 1. Multiple solution diagram.
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Figure 2. Time evolutions of transients between solution branches.

obtained up to Ra=4×105 and down to Ra=3:12×105. This is the second branch of un-
steady solutions, whose ending point is located around Ra=4:1×105. Note already that for
Ra=3:15×105 there are two possible solutions to the unsteady Navier–Stokes equations. In
the same way the third and fourth branches of unsteady solutions were obtained: on the third
branch solutions are symmetry-breaking (Mode 3) and have 12 wave structures (breaking the
symmetry of base solution) and solutions on the fourth are symmetric and have 13 wave
structures (preserving the symmetry of base �ow solution). The third solution branch ranges
approximately from Ra=3:5×105 to Ra=5:7×105. The lower value was determined from
Figure 2 which displays the transient from Ra=3:5×105 to 3:4×105—from Branch 3 to
Branch 2. The starting point of the fourth branch was located around 3:9×105. Note also
that at Ra=4×105 three di�erent periodic solutions were found, all of which remained stable
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Table III. Maxima of the di�erences between time-averaged and
unstable base solution at Ra=4×105.

Branch 2 Branch 3 Branch 4

u 3:6669×10−2 3:3154×10−2 1:6191×10−2
v 3:9079×10−2 3:5327×10−2 1:6770×10−2
� 9:6237×10−3 8:8987×10−3 4:0563×10−3

over thousands of dimensionless time units, which of course does not constitute a de�nitive
proof of their stability. Surprisingly (and fortunately) enough, for the mandatory value of
Ra=3:4×105 of the benchmark, there thus seems to exist only one periodic solution.
We did not perform more detailed computations to investigate the stability limits of each

solution branch because of the di�culties in �nding these limits: to the best of our method-
ology they can only be determined by working with in�nitesimal perturbations, which means
using very small increments of Rayleigh number and integrating for long computing times;
it is noted that the transients get longer and richer§ when approaching these limits and the
computations are consequently very expensive. These �gures should still be considered as
indicative in the sense that the limits of each branch remain to be accurately determined.
On the �rst two branches unsteady solutions are periodic (apart from the previous remarks)

while on the third and fourth we observed transition to quasi-periodicity and to chaos: the �rst
appearance of quasi-periodic solutions was observed for Ra=5:4×105 on the third branch
and Ra=5:0×105 on the fourth branch; The appearance of chaos occurred for Ra=5:7×105
on the third branch and Ra=5:5×105 on the fourth branch.

3.3.2. Time-averaged and unstable steady-state solutions at supercritical Ra. When �ows in
the cavity become unsteady, the time-averaged solutions di�er from the corresponding unstable
base �ow solution and it is interesting to investigate their di�erence (see the benchmark
proposal [1]). As we have access to both unstable steady-state solutions and time-averaged
solutions, we computed and tried to interpret the di�erence. We chose to do this at a Rayleigh
number of 4×105 for which there are three di�erent periodic (and hence three di�erent time-
averaged) solutions. Each periodic solution stems from a di�erent pair of complex linearly
unstable modes of the Jacobian which correspond to the three modes shown in Plate 1. In Plate
2 are plotted the di�erences between the time-averaged and unstable steady-state solutions for
the three branches. These di�erences seem to be symmetric and their spatial distributions are
very similar (almost the same pattern). They are however not the same and their corresponding
maxima are given in Table III showing that the di�erence of largest amplitude corresponds to
Branch 2 and that of smallest amplitude to Branch 4. It seems therefore that at Ra=4×105
di�erent branches of periodic solutions give rise, in a time-average sense, to di�erent deviations
from the corresponding unstable steady-state solution but they seem to have little e�ect on
the symmetry of the deviations.

§It is possible to observe quasi-periodic �ows in the vicinity of the branch limits before unsteady solutions change
branch. Unsteady solutions later referred to as �rst quasi-periodic �ows are not to be confused with these quasi-
periodic �ows observed in the vicinity of the branch limits.
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Figure 3. Periodic solutions at Ra=4×105. The corresponding amplitudes are equal to 0.0763351,
0.0729947 and 0.0507559, respectively, for Branch 2, Branch 3 and Branch 4. The ratios between the

amplitudes squared are in close agreement with those between the maxima listed in Table III.

In the vicinity of the corresponding bifurcation point, one can consider
√
Ra− Rac as a

small parameter and expand the full saturated (�nite-amplitude) non linear unsteady solution
into a polynomial series of �=

√
Ra− Rac i.e.

∑
n=0 x

(n)�n. For n=0; x(0) is chosen to be
the base solution X; for n=1;x(1) is the pair of complex unstable modes, which oscillates
in time as exp(±i!t) and is governed by the linearized N–S equations. The time-average of
x(1);x(1), is therefore equal to zero. For n=2, the governing equations are the following:

@x(2)

@t
=
(

C√
RaPr

L+ Nx (0)
)
x(2) − Ñx(1) (16)

where Ñx(1) represents the full non-linear terms. It is noted that, whatever the symmetry
of x(1); Ñx(1) is always symmetric, and x(2) is therefore symmetric. The non linear inter-
action of x(1) with itself, i.e. Ñx(1), yield a time-independent part and a time-periodic part
oscillating like exp(±2i!t). x(2), the time-average of x(2), is thus di�erent from zero and
contributes to leading order to the di�erence between the time-averaged and base �ow solu-
tion. This explains why the di�erences between the time-averaged and unstable steady-state
solutions are all seemingly symmetric, although strictly speaking only those corresponding
to branches 2 and 4 (eigenmodes which have the base �ow symmetry) should have this
property.
The above analyses also show that deviations of time-average from base solution are pro-

portional to the amplitude squared of x(1). Figure 3 displays time-evolutions of temperature at
a monitoring point for each solution branch at Ra=4× 105 (time scale is translated), we see
that Branch 2 has the largest amplitude while Branch 4 is the smallest. The ratios between
the squared amplitudes are in excellent agreement with those between the maxima of the
deviations listed in Table III.
Although the above analysis explains the symmetry of the deviations of time-averaged

solutions from the base solution observed at Ra=4×105 and the relationship between the
deviations and the amplitudes of the corresponding periodic solutions, it is not clear why the
spatial distributions of the deviations are almost the same for the three solution branches.
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Figure 4. Time evolutions of w velocity component showing damped and
amplifying 3D perturbations (Branch 2).

More e�orts should be made in order to understand why and to study the link between the
deviations and the stationary modes of the Jacobian.

3.4. Two- to three-dimensional �ow transition

It is of course of some interest to investigate the validity of the two-dimensional assumption.
We have investigated the stability of two-dimensional solutions to three-dimensional perturba-
tions which are periodic in the third dimension. This was performed using time integration of
the 3D equations described in Section 2.3, starting from either a steady 2D solution or a 2D
unsteady solution. This was carried out with a spatial resolution of 32×120× 40 and we in-
vestigated disturbances of wavelengths comprised between 2 and 10. For subcritical Rayleigh
numbers, i.e. steady 2D solutions, we did not �nd any unstable 3D perturbations. We then
studied the mandatory Rayleigh number (Ra=3:4× 105) and again did not �nd any unstable
3D perturbations. These results led us to the conclusion that up to Ra=3:4×105, the 2D
solutions, either steady or unsteady, are stable to three-dimensional perturbations, although, as
said earlier, these numerical investigations cannot be considered as a de�nitive proof.
In order to observe the 2D–3D transition, we investigated the stability of solutions on

Branches 2, 3 and 4 for increasing Rayleigh numbers with a depth set at two times the cavity
width. With increasing Ra Branch 2 was found to become 3D between 3:7× 105 and 4×105
as three-dimensional perturbations are damped at Ra=3:7×105 and ampli�ed at Ra=4×105
(Figure 4). Note that the cavity depth used which is equal to 2 times the cavity width
is justi�ed a posteriori by the fact that the corresponding �ow structure contains only one
wavelength in this direction (Plate 3). For Branch 3 the 2D-3D transition was located between
Ra=3:8×105 and 4:2× 105 while for Branch 4 the transition occurs between Ra=3:9×105
and Ra=4:5×105. It is worth noting that the 2D-3D transition is related to another Hopf
bifurcation which results in a low frequency modulation even during linear phases. As the
corresponding base solutions are periodic in time, there is no means to determine the critical
points other than carrying out Floquet analysis [21; 22]. Fortunately the present periodic base
solutions are two-dimensional and the third velocity component acts as perturbations. We can
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therefore measure growth rates during linear phase of the transients and estimate roughly the
transition point for each branch by doing linear interpolation to �nd the root of �(Ra)=0.
The critical Rayleigh numbers obtained are equal to 3:84×105, 3:93×105 and 4:11×105,
respectively, for Branches 2, 3 and 4. As we did not perform more computations to re�ne
these critical values, they should still be considered as approximate.
The periods (angular frequencies) of the corresponding Hopf bifurcations were estimated

from time evolutions of the third velocity component: it turned out that on each solution
branch the travelling waves responsible for the 2D–3D transition have a longer period (lower
angular frequency) than that of the periodic two-dimensional base �ow. In order to understand
the mechanism of the 2D–3D transition, we visualized the perturbations in various forms:
isolines in constant x and z planes, isosurfaces, etc. We discovered that perturbations are
mainly concentrated in the top and bottom thirds of the cavity and oscillate in the x–y plane.
Plates 4, 5 and 6 show that perturbations consist of a weak travelling part along cavity walls
and of a strong oscillating part in the core region: the oscillating part copes with the travelling
part. As the 2D periodic base solution is independent of the z direction, the 2D–3D transition
breaks this symmetry and perturbations responsible for that possess another symmetry of
z-translation : (�̃; ũ; ṽ; w̃; p̃)(x; y; z)= (�̃; ũ; ṽ; w̃; p̃)(x; y; z + D) where D is the cavity depth
(period). This will be the symmetry of 3D perturbations on Branch 3 responsible for the 2D
–3D transition due to the fact that the periodic base solution on Branch 3 does not possess
any symmetry in the x–y plane. On the other hand the periodic base solutions on Branches
2 and 4 are symmetric in x–y plane, there exists a z0 about which perturbations are either
symmetric or anti-symmetric, i.e. (�̃; ũ; ṽ; w̃; p̃)(x; y; z)= (−�̃;−ũ;−ṽ; w̃; p̃)(W−x; H−y; 2z0−z)
or (�̃; ũ; ṽ; w̃; p̃)(x; y; z)= (�̃; ũ; ṽ;−w̃;−p̃)(W − x; H − y; 2z0 − z). Perturbations responsible for
the 2D–3D transition on Branches 2 and 4 are therefore anti-symmetric.
Details of the 2D–3D transition such as critical Rayleigh number and critical wave number

should be investigated in future through Floquet analysis along the lines of Reference [22].

4. SUMMARY AND CONCLUSIONS

In an air �lled (Pr=0:71) di�erentially heated cavity of vertical aspect ratio 8 with adia-
batic top and bottom walls, the transition from steady to time-dependent behaviour occurs at
Ra=306192± 10 and the critical angular frequency is equal to 1.709084. The corresponding
perturbations (Mode 1) are travelling waves and break the symmetry of the steady base �ow
solution.
For the requested benchmark value of Ra=3:4× 105, the solution is periodic in time with a

period of 3.4115 and symmetric in space. Visualization of the spatial structure of the �uctua-
tions con�rms that the solution results from the nonlinear saturation of the second most unsta-
ble mode (Mode 2) for which the critical parameters are Rac = 311170±10 and Tc = 3:424228.
Spatial and time resolution convergence were checked for the proposed reference solution.
Further computations show that the unsteady solution branch (Branch 1) corresponding to

the most unstable eigenmode (Mode 1) exists only for a small range of Rayleigh number
(up to Ra=3:2×105). The supercritical regime was investigated up to Ra=6×105, and four
solution branches were obtained. Branch 2 extends approximately from Ra=3:12×105 to
Ra=4:1×105, Branch 3 starts from Ra=3:5×105 and Branch 4 begins at Ra=4×105. The
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lower limit of Branch 3 agrees with the bifurcating point of Mode 3 which is Rac = 333899:6,
Mode 3 is again symmetry-breaking. First appearance of quasi-periodic and chaotic �ows are
approximately observed at Ra=5:0×105 and Ra=5:4×105, respectively.
In the present work we were also interested in time-averaged solutions and especially in the

di�erence between a time-averaged solution and the corresponding base �ow solution. Partic-
ular attention is given to Ra=4×105 for which there are three periodic unsteady solutions. It
turns out that the di�erences between the time-averaged solutions and the base solution are, to
the norm of the eye, symmetric and have similar spatial distribution despite the fact that the
periodic solutions result from di�erent linearly unstable modes possessing di�erent symmetries
and angular frequencies. Asymptotic expansion explains at least why the di�erences are all
seemingly symmetric and proportional to the amplitude squared of the periodic solutions. It
would be of interest to investigate the relationship between the di�erences and the stationary
modes of the Jacobian. We are deeply convinced that the answer to the question will shed
light on our understanding of nonlinear interactions between di�erent modes and contribute
to the construction of low degree-of-freedom models for �ow control.
Finally we investigated the stability of 2D solutions with respect to 3D perturbations. No

2D-3D transition occurs before the onset of time dependence of 2D �ow nor at the mandatory
Ra requested. By �xing a cavity depth equal to two times the cavity width we did observe
2D-3D transitions at higher Rayleigh numbers: the symmetry properties of the corresponding
perturbations have been discussed and the critical Ra values were determined to be approx-
imately equal to 3:84×105; 3:93×105 and 4:11×105, respectively, for Branches 2, 3 and
4. These results show that the 2D assumption is marginally valid in the range of Rayleigh
numbers corresponding to the transition to unsteadiness. More re�ned Floquet analysis should
however be carried out.
In conclusion, we have addressed and assessed some of the issues concerning the computa-

tional predictability of natural convection in enclosures in the early unsteady and transitional
regime, although more work is needed to extend these capabilities to real life (3D, complex
geometries, variable properties) �ow con�gurations.
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Plate 1. Real and imaginary parts of temperature eigenmodes of the �rst three most unstable modes.
Mode 1 (left), Mode 2 (middle) and Mode 3 (right).
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Plate 2. Di�erences between time-averaged and unstable base solution at Ra=4×105 (Branch 2: left,
Branch 3: middle, Branch 4: right). The �elds are shown in u; v and � order.

Plate 3. Spatial distribution of 3D disturbances (from left to right: Branch 2, Branch 3 and Branch 4).
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Plate 4. Temperature perturbations of the unstable oscillatory 3D mode at Ra=3:9×105 (Branch 2).
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Plate 5. Temperature perturbations of the unstable oscillatory 3D mode at Ra=3:9×105 (Branch 3).
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Plate 6. Temperature perturbations of the unstable oscillatory 3D mode at Ra=3:9×105 (Branch 4).
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